
Distributed and Adaptive Execution of Condor

DAGMan Workflows

Selim Kalayci
1
, Gargi Dasgupta

2
, Liana Fong

3
, Onyeka Ezenwoye

4
, S. Masoud Sadjadi

1

1
Florida International University, Miami, FL, USA,{skala001,sadjadi}@cs.fiu.edu

2
IBM India Research Lab, New Delhi, India, gdasgupt,@in.ibm.com

3
IBM Watson Research Center, Hawthorne, NY, USA, llfong@us.ibm.com

4
South Dakota State University, Brookings, SD, USA, onyeka.ezenwoye@sdstate.edu

Abstract— Large-scale applications, in the form of workflows,

may require the coordinated usage of resources spreading across

multiple administrative domains. Scalable solutions need a

decentralized approach to coordinate the execution of such

workflows. At runtime, adjustments to the workflow execution

plan may be required to meet Quality of Service objectives. In

this paper, we provide a decentralized execution approach to

large-scale workflows on different resource domains. We also

provide a low overhead, decentralized runtime adaptation

mechanism to improve the performance of the system. Our

prototype implementation is based on standard Condor

DAGMan workflow execution engine and does not require any

modifications to Condor or its underlying system.

Keywords: Application workflow, resource domain, execution,

decentralization, distributed system.

I. INTRODUCTION

Large-scale applications, in the form of workflows, may
require a coordinated usage of resources spreading across
multiple administrative domains [3, 4]. Current systems mostly
provide a centralized approach to the execution of such
workflows across resource domains. This may induce
scalability problems for large workflows executing in many
domains. In addition, the execution may not be able take
advantage of the flexibility of site autonomy. In our previous
study [5], we provided a solution to decentralize the execution
of workflows to address these issues. Another desired
capability with the execution of large-scale workflows in
dynamic distributed environments is the runtime steering of the
workflow in order to meet the desired Quality of Service
objectives. In this paper, we will focus on the runtime
adaptation aspect on decentralized workflow execution.

Typically, scientific workflows are composed as abstract
workflows, in which tasks and data are specified without
bindings to the actual physical resources. Workflow
management systems [2, 6, 7, 10, 11] perform the execution of
abstract workflows in two basic steps. In the first step, tasks
and data comprising the workflow are mapped on to the
available physical resources using some method or heuristic
[14, 15]. This results in a concrete workflow, which then can be
enacted. The second step carries out the execution of the
concrete workflow in compliance with the dependency

relationships between tasks. But, the inherently dynamic
characteristics of the resources, and the occasional
unpredictable behavior of the workflow tasks, may require
variations in the original workflow execution plan to meet the
desired Quality of Service objectives.

Most of the existing proposals [8, 22, 2] tackle this problem
by re-mapping the rest of the workflow, halting the execution
of the original plan and enacting a new execution plan. This
approach is very costly to perform, and also requires the
interruption of the whole workflow execution even if the
variations at the workflow execution plan does not require
variations to execution plan of all the tasks. In this paper, we
propose a new adaptation approach that is low-overhead,
because it operates at the sub-workflow level and requires only
the involvement of the affected tasks. Also, the variations to the
execution plan do not interrupt the execution of the entire
workflow.

Our prototype implementation focuses on adapting an
existing workflow management system to make it more
resilient to changes in its execution support. Hence, in this
paper, we present an adaptation mechanism to a widely-used
centralized workflow management system called Condor
DAGMan [12]. Since Condor DAGMan is a very popular
system, the adaptation mechanism we provide is transparent,
which means that it does not require modifications to the
Condor DAGMan infrastructure, so no changes is required to
the existing installations. Our prototype accomplishes both the
decentralized execution and the dynamic adaptation at runtime
in a decentralized and non-intrusive manner.

The technical contributions detailed in this paper include:

 The novel concept of adaptive sub-workflow during
runtime of workflow execution in peer domains.

 The design of adaptive sub-workflow run-time support
with event notification across peer domains.

 The prototype implementation of adaptive sub-workflow
as a transparent enhancement to a conventional workflow
execution engine.

The rest of the paper is organized as follows. In Section 2, a
background on workflows and our decentralization approach is
provided. In Section 3, we present our adaptive workflow

execution approach. In Section 4, we provide implementation-
level details. In Section 5, the related work is reviewed. In
Section 6, the paper is concluded and some future work is
discussed.

II. BACKGROUND

In this section, we briefly introduce the concept of scientific
workflow management. We provide an overview of our
decentralized design of workflow management, upon which
our adaption of workflow execution is designed.

A. Application workflow and execution
Fig. 1 shows a very simple workflow represented as a

directed acyclic graph (DAG) G = (V, E), where V = {V1, V2,
…, V8} is the set of vertices that correspond to the tasks and E
= {E1, E2, …, E10} is the set of edges that correspond to the
dependencies between the tasks. Workflow managers execute
the tasks in V in the order specified by the dependencies
between them. For example, if there is an edge in the graph
from vertex Vx to vertex Vy, Vy can start its execution only
after Vx has finished its execution.

For scientific workflow applications, tasks in the graph
need to map unto required resources (e.g, computation or data)
before execution begins. For example, Pegasus system [6]
provides the mapping functions as a planner for workflows and
Condor DAGMan system executes the workflow using the
required resources.

B. Decentralized workflow
Based on our approach for decentralized workflow

execution [5], the home workflow manager (HWM) first
decides on a mapping of workflow tasks to its peer domains.
Based on the workflow in Fig. 1, a sample mapping for this
workflow is shown in Fig. 2. Tasks are first assigned to
domains, and then actual binding of tasks to specific resources
is made autonomously by each domain.

1) Mapping of workflow
Graph partitioning techniques [17-20] were used in the

literature to map the workflow tasks to peer domains. We used
partitioning tools provided by the package called METIS [1],
which includes multi-level partitioning tools for graphs and
hyper-graphs. When partitioning the graph, basic workflow
information such as structure, computation-communication
costs associated with tasks and dependencies are taken into
consideration. As the result of workflow partitioning, each task
will be associated with one of the peer domains.

Figure 1. A Sample workflow specification represented as a DAG.

2) Decentralized workflow execution
When a workflow is submitted to a domain, it is assigned a

HWM. After the mapping, the HWM extends the mapping
information to the original workflow by associating each task
with its corresponding execution domain information,
including the corresponding end-point reference (EPR). With
this information, each peer knows where each task is going to
execute, and peers are able to communicate during execution.
The HWM distributes this extended workflow definition to all
the participating peers by using the operation:

sendWorkflow (workflowID, workflowDef)

The workflowID includes a unique identifier given by the
HWM, and the workflow manager’s EPR. The workflowID
uniquely identifies a workflow instance. The workflowDef is
the extended workflow specification. Each task in the original
workflow specification is also identified with a unique ID as
part of the workflow specification before the distribution.

Upon receiving the extended workflow, each workflow
manager executes only the tasks that have been assigned to it.
After a workflow manager executes a task, it checks whether
the task has any dependent task(s). If a dependent task is
assigned to a different peer, the workflow manager sends a
trigger message to the responsible peer to start execution of the
dependent task(s). Using Fig. 2 as an example, when task #1 is
completed, the workflow manager in domain 1 sends a trigger
message to the workflow manager in domain 2 to start
execution of task #3. The signature of this operation is:

sendTrigger(homeEPR,workflowID,taskID,status,data)

The homeEPR and workflowID parts correctly identify the
workflow instance. The taskID identifies the specific preceding
task in the workflow being executed. The status part gives an
indication of the status of the preceding task. A done status
indicates that this task has executed successfully and the output
data has been generated successfully. A failed status message
would indicate to the next peer workflow manager that the
preceding task did not complete successfully. The data in this
message refers to the output data generated by the task, and can
be a reference to a storage system or an RLS (replica locating
service). The middleware for the underlying Grid infrastructure
[17, 13] can be used to transfer data between peers.

Fig. 3 illustrates the execution control and peer interactions
of the sample workflow, based on the mapping given in Fig. 2.
Workflow Manager 1 (WFM1) is the HWM, and WFM2 is the
peer workflow manager. There are 4 trigger operations made
between peers.

Figure 2. Sample workflow mapped on two domains. For simplicity, the

labels for edges are dropped and vertices are merely numbered.

Figure 3. Execution controls and peer interactions during the execution of

the sample workflow.

III. ADAPTIVE EXECUTION

Our adaptive workflow execution approach builds upon the
distributed execution mechanism that is briefly explained in
Section 2. So, the assumption in this section is that, a workflow
has been mapped on multiple domains, and it is being executed
in a peer-to-peer manner according to our decentralization
mechanism. At runtime, the original workflow execution plan
may need to be changed in order to meet Quality of Service
objectives. Reasons for change may vary from inaccurate
runtime predictions made during the mapping process to
dynamic changes in computing environments due to resources
being overloaded.

Fig. 4 shows the architectural diagram of our adaptation
approach. Gray-colored components and artifacts denote those
introduced by us. As our approach is based on peer-to-peer
communication and collaboration of workflow managers
(WFM), rather than coming up with a whole new mapping for
the entire workflow, we let individual workflow managers
detect any problems in their own domain that may prevent QoS
objectives from being met. In such a case, tasks may then be
migrated to other available domains for execution. The
execution of the rest of the workflow is not affected by this
adaptation. Only the peers directly involved within this
adaptation process need to perform some additional steps.

A. Monitoring and Detection

Each workflow manager independently monitors its
resource queues for normal operations, as well as detection of
problems and troubleshooting. A backed-up resource queue is
almost always an indication of some underlying problem. In
this work, we consider readyQ that queues all the tasks that are
ready for execution at the WFM (a ready task is one for which
all preceding dependencies have been satisfied). Under normal
operating conditions, tasks from the readyQ are steadily
dispatched for execution to the underlying scheduler resources
(i.e., computes nodes). A steadily building up readyQ signifies
that there is some problem with the underlying infrastructure
resources (e.g., resource outages, surge in background traffic,
etc). It also almost always signifies that some QoS objective of
response time or makespan will be compromised unless some
corrective action is taken. We use readyQ-length as the
indicator for the onset of congestion and proactively make
runtime reconfigurations to deal with this.

Figure 4. Architecture of the Distributed Adaptive Workflow Execution

Approach

Detecting a congested queue: Each WFM continually
monitors its readyQ-length. For every readyQ, we assign two
thresholds low and high. The average queue length is
calculated, using an exponential weighted moving average,
given by:

avgt = (1 − w)* avgt−1 + w * qlent,

where qlent is the length of readyQ at time t, and w takes
values between [0,1].

At time t, the following decisions are taken:

 if the queue length is below low, no corrective action is
taken.

 if the queue length is between low and high, we
probabilistically pick some tasks for remapping. The next
subsection outlines how we select the tasks for remapping.

 if the queue length is above high, we pick all tasks for
remapping.

B. Planning

Selecting jobs to move: A runtime reconfiguration in the
original mapping involves the movement of yet-to-start
computation or data management jobs to another domain. Our
approach is based on RED [21], albeit accounting for data
transfer involved in remapping the jobs. The probability, pj

^
, of

selecting a particular job j for moving depends on the average
queue length, last time a job was moved from the queue, and
also on data characteristics of the job.

Since the average length varies at a queue (belonging to site
i) from low to high, the probability that a new compute job j is
moved varies linearly from 0 to P (a small fraction). The final
moving probability pj

^
, however, also increases slowly with the

number of jobs seen since last move (count), and decreases as
the local data of j at i increases. We define the probability,

pj
^
 = {pb/(1 − count *pb)} * pij , where

pb = {(avgq − lowq)/(highq − lowq) }*P,

pij = (Δmax − Δi,j)/ (Δmax − Δmin)

where Δmax,, Δmin denote the maximum, minimum data
requirements of j, respectively, and Δi,j is the size of local data

present for j at site i. Intuitively, this is the stickiness factor of a
job to a site, with higher values indicate lower probability of
movement.

Selecting a target domain to move to: Having selected a job
to move, a target domain for the job needs to be identified. The
target domain can be selected randomly from among the peer
WFMs or be based on some characteristics of the peer domain.
For instance, a job can be moved to an alternate domain that
has the maximum link bandwidth, or processing capacity. A
simple negotiation process occurs between the source domain
and the target domain candidates. A candidate target domain
accepts to receive the tasks being pushed only if it is able to
sustain its readyQ-length below low threshold after the
intended move.

C. Execution: Adaptation Mechanism
As mentioned earlier, our adaptation mechanism is based

on a peer-to-peer push-based mechanism, without interrupting
the execution of the rest of the workflow. In subsections A and
B, we discussed methods for identifying the set of tasks to
push, and the peer(s) to push those tasks to them. Here, we
explain the mechanism for performing task migration and
execution without interrupting the execution in-progress, while
maintaining the integrity of the execution of the whole
workflow.

When a set of tasks need to be moved from one domain to
another, we capture those tasks and the associated trigger
messages and create a new workflow, which we call a
patchDAG. The patchDAG is a fragment of the whole that
encapsulates the business logic of the tasks that are selected for
migration. This patchDAG is transferred to the proper domain
and executed independent of the original workflow. Even
though it executes separately from the original workflow, by
means of the trigger messages embedded within it, the
patchDAG achieves the necessary interactions with the original
workflow. This way, execution of the original workflow is
sustained without making any changes to the rest of the
workflow.

Fig. 5 shows a sample mapping scenario of a simple
workflow that is to be executed in collaboration between
WFM-1 and WFM-2 with our decentralized workflow
execution approach. Consider a case where after the execution
of task A in WFM-1, WFM-1 detects an overload on its
resources and decides to push task B and task C to WFM-2.

Assuming that WFM-2 is able to receive those tasks, Fig. 6
shows the new outlook of the execution of the workflow after
the adaptation. The patchDAG in this case includes task B, task
C, and individual trigger messages from each of these tasks to
synchronize with task F in the original workflow. This
patchDAG is constructed at WFM-1 and transferred to WFM-2
for execution. WFM-2 starts the execution of this patchDAG
independent from the original workflow, but as the tasks in the
patchDAG finish and trigger messages are sent out,
synchronization with the original workflow is achieved and
task F in the original workflow can be scheduled for execution
in WFM-2.

We will give details of how a patchDAG is constructed and
we will show a sample patchDAG specification in Section 4.

Figure 5. Before Adaptation

IV. IMPLEMENTATION

In this section, first we will introduce the implementation of
decentralizing a centralized workflow specification. Then, we
will explain how we achieve adaptation over decentralized
execution. Our implementation is based on Condor DAGMan
workflow execution engine, which is a meta-scheduler on top
of Condor workload scheduler [9]. The systems we have tested
our prototype implementation had standard Condor versions of
6.7, on which and further versions.

A. Decentralization
Let us consider the sample mapping of a DAG spanning

across multiple domains as in Fig. 5. The standard centralized
Condor DAGMan specification on WFM-1 is provided in
Listing 1. In this case, the whole workflow is orchestrated from
the Condor DAGMan instance at WFM-1. Cross-domain task
submissions (e.g., task D) would be facilitated through the
employment of Condor-G [16] and those tasks would be
constructed accordingly. The details pertaining the individual
task construction and modification are outside the scope of this
paper.

The decentralization of an original DAG specification for
our Condor DAGMan-based prototype occurs in two stages. In
the first stage, HWM (in this case, WFM-1) aggregates the
original DAG specification with mapping and site-specific
contact information. Mapping information denotes the site that
is responsible for each task’s execution. Site-specific contact
information includes the GRAM (Grid Resource Allocation
and Management) [3] end-point reference to facilitate trigger
message communication, and the GridFTP [17] server and
URL information to facilitate the transfer of data items among
sites. HWM distributes this aggregated DAG specification to
all the peer WFMs involved in the execution of the workflow.

Figure 6. After Adaptation

Listing 1. Original DAG specification for the DAG given in Figure 5.

The second stage of decentralization process occurs at
individual sites upon receiving the aggregated DAG
specification. Each WFM modifies its own copy of the DAG
specification based on the information received from the
HWM. Listing 2 and Listing 3 displays the DAG specifications
at WFM-1 and WFM-2 respectively, after the modification.
There are 3 basic functionalities involved within this
modification process:

1. If a task is mapped on a different domain, this task is
labeled as DONE in the DAG specification. (This will cause
local Condor DAGMan instance to skip this task during the
execution.)

2. If a task has child task(s) that is mapped on a different
domain, insert a Post Script in the DAG specification to
synchronize with the child task(s).

3. If a task has parent task(s) that is mapped on a different
domain, insert a Pre Script in the DAG specification for the
reception of a matching synchronization message.

Our Post Script prototype simply generates a file that is
specifically named (e.g., file: A_D to trigger task D at WFM-2)
and puts it in the shared folder of the receiving end. The Pre
Script simply checks the existence of the specifically named
file in the shared folder.

Hence, the final set of DAG specifications at each site
differs, but the collaborative execution of these DAGs results in
the complete and exact execution of the original DAG
specification.

Listing 2. Modified DAG specification for WFM-1.

Listing 3. Modified DAG specification for WFM-2.

B. Run-time Adaptation
As mentioned in Section 3, we provide run-time adaptation

through an adaptation daemon running at each site. The
adaptation daemon constantly monitors the execution progress
of the workflow and the length of ready queue. It also has a
thread that listens for any push requests that might come from
other peers.

The specific functionality of an adaptation daemon in case
of an adaptation process varies depending on its role. The
algorithm employed at the adaptation daemon for the pushing
role is shown in Listing 4. After the task(s) to push is chosen,
and a site to push the patchDAG is picked successfully, the
patchDAG is sent to the other site. Then, the pusher site needs
to perform some additional operations at the local site. First, it
needs to remove those pushed tasks from the local Condor
queue (step 5). But, Condor DAGMan requires all tasks to
complete successfully for the whole DAG to succeed.
Therefore, step 5 will cause the local DAG execution to fail
eventually (it fails when the workflow execution cannot
proceed any further due to dependencies). When a DAG fails
execution, Condor DAGMan automatically generates a rescue
DAG (step 6). Adaptation daemon monitors and detects the
generation of this rescue DAG. Then, it adapts this rescue
DAG to conform to the new mapping scenario. First, it labels
those tasks that are pushed to other sites as “DONE” in the
rescue DAG (step 7.a). Also, if there are any tasks that are
locally mapped and have at least one parent task among the
pushed tasks, a Pre Script is inserted into the rescue DAG
specification to achieve synchronization (step 7.b.) Then, this
modified rescue DAG is submitted again to the local Condor
DAGMan engine.

Listing 5 shows the algorithm employed at the adaptation
daemon for the receiving role. The only operation that the
adaptation daemon needs to perform in this case is to receive
the patchDAG and submit it to the local Condor DAGMan
engine.

Listing 6 shows the sample specification for the patchDAG
illustrated in Fig. 6. In this specification, the only different item
than the previous specifications is the transferData script. There
is a transferData Pre Script before both task B and task C, and
it performs the transfer of any input data required for the
execution of these tasks at its new location.

Listing 4. Pushing algorithm employed within the Adaptation Daemon.

1. Detect the need for adaptation

2. Select the task(s) to push

3. Pick a site among candidates

a. if negotiation is successful, move to step 4

b. if negotiation is unsuccessful, pick another site, repeat step

3

c. if tried all the sites, abort the adaptation

4. Construct the patchDAG and send it to the receiver site

5. Remove pushed tasks from the local queue (condor_rm taskID)

6. Wait for a rescue DAG to be created by Condor DAGMan

7. Modify the rescue DAG

 a. label the pushed tasks as DONE

b. insert a Pre Script for the task(s) which is mapped locally

and is a child of a pushed task

8. Submit the modified rescue DAG to Condor DAGMan.

Job A A.submit DONE

Job B B.submit DONE

Job C C.submit DONE

Job D D.submit

Job E E.submit

Job F F.submit

SCRIPT PRE D synch.sh A_D

SCRIPT PRE E synch.sh A_E

SCRIPT PRE F synch.sh B_F C_F

…

Job A A.submit

Job B B.submit

Job C C.submit

Job D D.submit DONE

Job E E.submit DONE

Job F F.submit DONE

SCRIPT POST A trigger.sh A_D A_E

SCRIPT POST B trigger.sh B_F

SCRIPT POST C trigger.sh C_F

…

Job A A.submit

Job B B.submit

Job C C.submit

Job D D.submit

Job E E.submit

Job F F.submit

PARENT A CHILD B C D E

PARENT B C D E CHILD F

Listing 5. Receiving algorithm employed within the Adaptation

Daemon.

Listing 6. PatchDAG specification for the scenario given in Figure 6.

V. RELATED WORK

Pegasus [6] and ASKALON [11] are two significant
workflow management systems for the grid environment.
Pegasus receives an incoming workflow and then partitions it
into a collection of sub-workflows. Pegasus uses the Condor
DAGMan [12] as the workflow execution engine. A single
central DAGMan instance works as a meta-scheduler to submit
and monitor jobs on local and remote domains of a grid. This is
a centralized model of workflow execution. ASKALON has its
own design of the workflow engines. For each workflow, the
execution enactment consists of a master and many slave
engine for sub-workflows. In other words, ASKALON
supports a distributed model of workflow execution. Unlike
Pegasus and ASKALON, the workflow system we propose for
a grid environment consists of one or more peer domain
workflow managers [5].

Partitioning an incoming workflow for execution can be
multiple phases and multiple iterations with a phase in
ASKALON [10], described as its initial partition phase and
run-time optimization phase. Re-partitioning of a workflow to
achieve run-time optimization phase can have one or more
iterations. ASKALON re-partition is done by the master engine
for the workflow. The approach described in this paper is
different from ASKALON as each peer workflow manager is
responsible for a sub-workflow repartitioning.

Many studies examine the efficiency and effectiveness of
run-time workflow rescheduling algorithm. The studies
presented in [22, 2] propose modifications to the initial
workflow schedule at run-time via some modifications to
existing workflow scheduling algorithms. The closest study [8]
to the work presented in this paper is provided as an adaptation
mechanism on top of Pegasus workflow planner [6]. In this
study, the mapping of a workflow executing on top of Condor
DAGMan workflow execution engine is monitored
periodically, and if there is a substantial increase or decrease in
queue wait times per site, Pegasus workflow planner tools are
called to perform a new mapping. After an improved mapping
is generated, execution of the current workflow is stopped, and
the workflow is deployed again according to the new mapping.
All the phases (monitoring, analysis, planning, and execution)
involved in this adaptation process are performed in a

centralized manner, and this is the main difference between this
work and our approach. Also, our approach does not
necessitate the halting of the current execution of the
workflow; hence it is expected to be lower-cost and less
intrusive under normal conditions.

VI. CONCLUSION

In this paper, we addressed the scalability and adaptation
problems of large-scale workflows in distributed environments.
Contrary to many existing solutions, our decentralized
approach has a low performance overhead and is transparent.
Our push-based mechanism does not require the use of any
other WFMs other than those that are directly involved with the
adaptation process. Also, our devised patchDAG-based
solution does not require the halting and re-deployment of a
workflow at runtime, but rather, acts as a bridge between the
remapped portions of the workflow. Our prototype
implementation on Condor DAGMan shows the feasibility and
transparency of our approach.

Our future studies include the enhancement of the
adaptation with a pull-based mechanism. With such as
mechanism, a lightly-loaded WFM can opportunistically pull
some of the tasks from relatively heavy-loaded sites. We also
would like to explore the application of our approach to other
existing workflow management systems.

ACKNOWLEDGMENT

This work was supported in part by the NSF (grants OISE-
0730065, OCI-0636031, and HRD-0833093), and in part by
IBM.

REFERENCES

[1] Karypis, G and Kumar, V., "Multilevel k-way Partitioning

Scheme for Irregular Graphs." J. Parallel Distrib. Comput. ,

1998, Issue 1, Vol. 48, pp. 96-129.

[2] Sakellariou, R. and Zhao, H. 2004. “A low-cost rescheduling

policy for efficient mapping of workflows on grid systems.” Sci.

Program. 12, 4 (Dec. 2004), 253-262.

[3] Globus Toolkit. [Online] http://www.globus.org/toolkit/.

[4] EGEE. [Online] http://www.eu-egee.org/.

[5] Kalayci, S. et al. “A Peer-to-Peer Workflow Mapping and

Execution Framework for Grid Environments.” Technical

Report FIU-SCIS-2010-01-01, Florida International University.

[6] Deelman, E, et al., "Pegasus: A framework for mapping

complex scientific workflows onto distributed systems." s.l. :

Scientific Programming, 2005, Issue 3, Vol. 13.

[7] Zhao, Y., Hategan, M., et al. "Swift: Fast, Reliable, Loosely

Coupled Parallel Computation." Salt Lake City, UT, 2007. 2007

IEEE Congress on Services.

[8] K. Lee, N.W. Paton, R. Sakellariou, E. Deelman, A. A. A.

Fernandes, and G.Mehta. “Adaptive Workflow Processing and

Execution in Pegasus.” In 3rd International Workshop on

Workflow Management and Applications in Grid Environments

(WaGe08) (in Proceedings of the Third International Conference

on Grid and Pervasive Computing Symposia/Workshops, May

25-28 2008, Kunming, China), 2008, pp. 99-106.

1. Receive the request to push tasks

2. Check the status of the local queue and respond to the request

 a. if response is negative, go back to step 1

 b. if response is positive, go to step 3

3. Receive the patchDAG

4. Submit the patchDAG to the local Condor DAGMan

Job B B.submit

Job C C.submit

SCRIPT PRE B transferData.sh

SCRIPT PRE C transferData.sh

SCRIPT POST B trigger.sh B_F

SCRIPT POST C trigger.sh C_F

http://www.globus.org/toolkit/
http://www.eu-egee.org/

[9] M. Litzkow, M. Livny, and M. Mutka, "Condor - a hunter of idle

workstations" in Proceedings of the 8th International

Conference of Distributed Computing Systems, June 1988.

[10] Duan, R and Prodan, R. Fahringer, T., "Run-time Optimisation

of Grid Workflow Applications." 2006. Grid Computing, 7th

IEEE/ACM International Conference on Grid. Barcelon, Spain,

2006.

[11] Wieczorek, M, Prodan, R and Fahringer, T., "Scheduling of

scientific workflows in the ASKALON Grid environment." s.l. :

ACM, 2005, Issue 3, Vol. 34.

[12] Condor team, “The directed acyclic graph manager”,

www.cs.wisc.edu/condor/dagmang, 2002.

[13] Allcock B., Foster I., Madduri R., “Reliable data transport: a

critical service for the grid”, In Building service based grids

workshop, Global Grid Forum 11, June 2004.

[14] Topcuouglu, H, Hariri, S and Wu, M., "Performance-Effective

and Low-Complexity Task Scheduling for Heterogeneous

Computing." IEEE Transactions on Parallel and Distributed

Systems, IEEE Press, 2002, Issue 3, Vol. 13.

[15] Yu, J and Buyya, R., Workflow Schdeduling Algorithms for Grid

Computing. Grid Computing and Distributed Systems

Laboratory, The University of Melbourne. s.l. : GRIDS-TR-

2007-10, 2007.

[16] Frey, J, et al., "Condor-G: A Computation Management Agent

for Multi-Institutional Grids.” Kluwer Academic Publishers,

2002, Issue 3, Vol. 5.

[17] Allcock B., et al., "Secure, efficient data transport and replica

management for high-performance data-intensive computing."

In IEEE Mass Storage Conference, San Diego, CA, April 2001.

[18] Hendrickson, B and Kolda, T.G., "Graph partitioning models for

parallel computing." Parallel Computing, s.l. : Elsevier Science

Publishers B. V., 2000, Issue 12, Vol. 26.

[19] Simon, Horst D., "Partitioning of unstructured problems for

parallel processing." Computing Systems in Engineering, 1991,

Vol. 2..

[20] Kernighan, B and Lin, S., "An Efficient Heuristic Procedure for

Partitioning Graphs." s.l. : Bell Systems Technical Journal,

1970, Issue 2, Vol. 49.

[21] S. Floyd and V. Jacobson. Random early detection gateways for

congestion avoidance. IEEE/ACM Trans. Netw., 1(4), 1993.

[22] Yu Z, Shi W. “An adaptive rescheduling strategy for grid

workflow applications.” IPDPS, IEEE Press, 2007; 1–8.

http://www.cs.wisc.edu/condor/dagmang

