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Abstract— Large-scale applications, in the form of workflows, 

may require the coordinated usage of resources spreading across 

multiple administrative domains. Scalable solutions need a 

decentralized approach to coordinate the execution of such 

workflows. At runtime, adjustments to the workflow execution 

plan may be required to meet Quality of Service objectives. In 

this paper, we provide a decentralized execution approach to 

large-scale workflows on different resource domains. We also 

provide a low overhead, decentralized runtime adaptation 

mechanism to improve the performance of the system. Our 

prototype implementation is based on standard Condor 

DAGMan workflow execution engine and does not require any 

modifications to Condor or its underlying system. 

Keywords: Application workflow, resource domain, execution, 

decentralization, distributed system. 

I.  INTRODUCTION  

Large-scale applications, in the form of workflows, may 
require a coordinated usage of resources spreading across 
multiple administrative domains [3, 4]. Current systems mostly 
provide a centralized approach to the execution of such 
workflows across resource domains. This may induce 
scalability problems for large workflows executing in many 
domains.  In addition, the execution may not be able take 
advantage of the flexibility of site autonomy. In our previous 
study [5], we provided a solution to decentralize the execution 
of workflows to address these issues. Another desired 
capability with the execution of large-scale workflows in 
dynamic distributed environments is the runtime steering of the 
workflow in order to meet the desired Quality of Service 
objectives. In this paper, we will focus on the runtime 
adaptation aspect on decentralized workflow execution. 

Typically, scientific workflows are composed as abstract 
workflows, in which tasks and data are specified without 
bindings to the actual physical resources. Workflow 
management systems [2, 6, 7, 10, 11] perform the execution of 
abstract workflows in two basic steps. In the first step, tasks 
and data comprising the workflow are mapped on to the 
available physical resources using some method or heuristic 
[14, 15]. This results in a concrete workflow, which then can be 
enacted. The second step carries out the execution of the 
concrete workflow in compliance with the dependency 

relationships between tasks. But, the inherently dynamic 
characteristics of the resources, and the occasional 
unpredictable behavior of the workflow tasks, may require 
variations in the original workflow execution plan to meet the 
desired Quality of Service objectives. 

Most of the existing proposals [8, 22, 2] tackle this problem 
by re-mapping the rest of the workflow, halting the execution 
of the original plan and enacting a new execution plan. This 
approach is very costly to perform, and also requires the 
interruption of the whole workflow execution even if the 
variations at the workflow execution plan does not require 
variations to execution plan of all the tasks. In this paper, we 
propose a new adaptation approach that is low-overhead, 
because it operates at the sub-workflow level and requires only 
the involvement of the affected tasks. Also, the variations to the 
execution plan do not interrupt the execution of the entire 
workflow. 

Our prototype implementation focuses on adapting an 
existing workflow management system to make it more 
resilient to changes in its execution support. Hence, in this 
paper, we present an adaptation mechanism to a widely-used 
centralized workflow management system called Condor 
DAGMan [12]. Since Condor DAGMan is a very popular 
system, the adaptation mechanism we provide is transparent, 
which means that it does not require modifications to the 
Condor DAGMan infrastructure, so no changes is required to 
the existing installations. Our prototype accomplishes both the 
decentralized execution and the dynamic adaptation at runtime 
in a decentralized and non-intrusive manner. 

The technical contributions detailed in this paper include: 

 The novel concept of adaptive sub-workflow during 
runtime of workflow execution in peer domains.  

 The design of adaptive sub-workflow run-time support 
with event notification across peer domains. 

 The prototype implementation of adaptive sub-workflow 
as a transparent enhancement to a conventional workflow 
execution engine. 

The rest of the paper is organized as follows. In Section 2, a 
background on workflows and our decentralization approach is 
provided. In Section 3, we present our adaptive workflow 



execution approach. In Section 4, we provide implementation-
level details. In Section 5, the related work is reviewed. In 
Section 6, the paper is concluded and some future work is 
discussed. 

II. BACKGROUND 

In this section, we briefly introduce the concept of scientific 
workflow management.   We provide an overview of our 
decentralized design of workflow management, upon which 
our adaption of workflow execution is designed. 

A. Application workflow and execution 
Fig. 1 shows a very simple workflow represented as a 

directed acyclic graph (DAG) G = (V, E), where V = {V1, V2, 
…, V8} is the set of vertices that correspond to the tasks and E 
= {E1, E2, …, E10} is the set of edges that correspond to the 
dependencies between the tasks. Workflow managers execute 
the tasks in V in the order specified by the dependencies 
between them. For example, if there is an edge in the graph 
from vertex Vx to vertex Vy, Vy can start its execution only 
after Vx has finished its execution. 

For scientific workflow applications, tasks in the graph 
need to map unto required resources (e.g, computation or data) 
before execution begins.  For example, Pegasus system [6] 
provides the mapping functions as a planner for workflows and 
Condor DAGMan system executes the workflow using the 
required resources. 

B. Decentralized workflow 
Based on our approach for decentralized workflow 

execution [5], the home workflow manager (HWM) first 
decides on a mapping of workflow tasks to its peer domains. 
Based on the workflow in Fig. 1, a sample mapping for this 
workflow is shown in Fig. 2. Tasks are first assigned to 
domains, and then actual binding of tasks to specific resources 
is made autonomously by each domain. 

1) Mapping of workflow 
Graph partitioning techniques [17-20] were used in the 

literature to map the workflow tasks to peer domains. We used 
partitioning tools provided by the package called METIS [1], 
which includes multi-level partitioning tools for graphs and 
hyper-graphs. When partitioning the graph, basic workflow 
information such as structure, computation-communication 
costs associated with tasks and dependencies are taken into 
consideration. As the result of workflow partitioning, each task 
will be associated with one of the peer domains. 

 

Figure 1.  A Sample workflow specification represented as a DAG. 

2) Decentralized workflow execution 
When a workflow is submitted to a domain, it is assigned a 

HWM. After the mapping, the HWM extends the mapping 
information to the original workflow by associating each task 
with its corresponding execution domain information, 
including the corresponding end-point reference (EPR). With 
this information, each peer knows where each task is going to 
execute, and peers are able to communicate during execution. 
The HWM distributes this extended workflow definition to all 
the participating peers by using the operation: 

sendWorkflow (workflowID, workflowDef) 

The workflowID includes a unique identifier given by the 
HWM, and the workflow manager’s EPR. The workflowID 
uniquely identifies a workflow instance. The workflowDef is 
the extended workflow specification. Each task in the original 
workflow specification is also identified with a unique ID as 
part of the workflow specification before the distribution. 

Upon receiving the extended workflow, each workflow 
manager executes only the tasks that have been assigned to it. 
After a workflow manager executes a task, it checks whether 
the task has any dependent task(s). If a dependent task is 
assigned to a different peer, the workflow manager sends a 
trigger message to the responsible peer to start execution of the 
dependent task(s). Using Fig. 2 as an example, when task #1 is 
completed, the workflow manager in domain 1 sends a trigger 
message to the workflow manager in domain 2 to start 
execution of task #3. The signature of this operation is: 

sendTrigger(homeEPR,workflowID,taskID,status,data) 

The homeEPR and workflowID parts correctly identify the 
workflow instance. The taskID identifies the specific preceding 
task in the workflow being executed. The status part gives an 
indication of the status of the preceding task. A done status 
indicates that this task has executed successfully and the output 
data has been generated successfully. A failed status message 
would indicate to the next peer workflow manager that the 
preceding task did not complete successfully. The data in this 
message refers to the output data generated by the task, and can 
be a reference to a storage system or an RLS (replica locating 
service). The middleware for the underlying Grid infrastructure 
[17, 13] can be used to transfer data between peers. 

Fig. 3 illustrates the execution control and peer interactions 
of the sample workflow, based on the mapping given in Fig. 2. 
Workflow Manager 1 (WFM1) is the HWM, and WFM2 is the 
peer workflow manager. There are 4 trigger operations made 
between peers.  

 

Figure 2.  Sample workflow mapped on two domains. For simplicity, the 

labels for edges are dropped and vertices are merely numbered. 



 
Figure 3.  Execution controls and peer interactions during the execution of 

the sample workflow. 

III. ADAPTIVE EXECUTION  

Our adaptive workflow execution approach builds upon the 
distributed execution mechanism that is briefly explained in 
Section 2. So, the assumption in this section is that, a workflow 
has been mapped on multiple domains, and it is being executed 
in a peer-to-peer manner according to our decentralization 
mechanism. At runtime, the original workflow execution plan 
may need to be changed in order to meet Quality of Service 
objectives. Reasons for change may vary from inaccurate 
runtime predictions made during the mapping process to 
dynamic changes in computing environments due to resources 
being overloaded.  

Fig. 4 shows the architectural diagram of our adaptation 
approach. Gray-colored components and artifacts denote those 
introduced by us. As our approach is based on peer-to-peer 
communication and collaboration of workflow managers 
(WFM), rather than coming up with a whole new mapping for 
the entire workflow, we let individual workflow managers 
detect any problems in their own domain that may prevent QoS 
objectives from being met. In such a case, tasks may then be 
migrated to other available domains for execution. The 
execution of the rest of the workflow is not affected by this 
adaptation. Only the peers directly involved within this 
adaptation process need to perform some additional steps. 

A. Monitoring and Detection 

Each workflow manager independently monitors its 
resource queues for normal operations, as well as detection of 
problems and troubleshooting. A backed-up resource queue is 
almost always an indication of some underlying problem. In 
this work, we consider readyQ that queues all the tasks that are 
ready for execution at the WFM (a ready task is one for which 
all preceding dependencies have been satisfied).  Under normal 
operating conditions, tasks from the readyQ are steadily 
dispatched for execution to the underlying scheduler resources 
(i.e., computes nodes). A steadily building up readyQ signifies 
that there is some problem with the underlying infrastructure 
resources (e.g., resource outages, surge in background traffic, 
etc). It also almost always signifies that some QoS objective of 
response time or makespan will be compromised unless some 
corrective action is taken. We use readyQ-length as the 
indicator for the onset of congestion and proactively make 
runtime reconfigurations to deal with this. 

 
Figure 4.  Architecture of the Distributed Adaptive Workflow Execution 

Approach 

Detecting a congested queue:  Each WFM continually 
monitors its readyQ-length. For every readyQ, we assign two 
thresholds low and high.  The average queue length is 
calculated, using an exponential weighted moving average, 
given by:   

avgt = (1 − w)* avgt−1 + w * qlent,  

where qlent is the length of readyQ at time t, and w takes 
values between [0,1].  

At time t, the following decisions are taken:   

 if the queue length is below low, no corrective action is 
taken. 

 if the queue length is between low and high, we 
probabilistically pick some tasks for remapping. The next 
subsection outlines how we select the tasks for remapping. 

 if the queue length is above high, we pick all tasks for 
remapping. 

B. Planning 

Selecting jobs to move: A runtime reconfiguration in the 
original mapping involves the movement of yet-to-start 
computation or data management jobs to another domain. Our 
approach is based on RED [21], albeit accounting for data 
transfer involved in remapping the jobs. The probability, pj

^
, of 

selecting a particular job j for moving depends on the average 
queue length, last time a job was moved from the queue, and 
also on data characteristics of the job. 

Since the average length varies at a queue (belonging to site 
i) from low to high, the probability that a new compute job j is 
moved varies linearly from 0 to P (a small fraction). The final 
moving probability pj

^
, however, also increases slowly with the 

number of jobs seen since last move (count), and decreases as 
the local data of j at i increases. We define the probability, 

pj
^
 =  {pb/(1 − count *pb)} * pij , where 

pb = {(avgq − lowq)/(highq − lowq) }*P,  

pij = (Δmax − Δi,j)/ (Δmax − Δmin) 

where Δmax,, Δmin denote the maximum, minimum data 
requirements of j, respectively, and Δi,j is the size of local data 



present for j at site i. Intuitively, this is the stickiness factor of a 
job to a site, with higher values indicate lower probability of 
movement.  

Selecting a target domain to move to: Having selected a job 
to move, a target domain for the job needs to be identified.  The 
target domain can be selected randomly from among the peer 
WFMs or be based on some characteristics of the peer domain. 
For instance, a job can be moved to an alternate domain that 
has the maximum link bandwidth, or processing capacity. A 
simple negotiation process occurs between the source domain 
and the target domain candidates. A candidate target domain 
accepts to receive the tasks being pushed only if it is able to 
sustain its readyQ-length below low threshold after the 
intended move. 

C. Execution: Adaptation Mechanism  
As mentioned earlier, our adaptation mechanism is based 

on a peer-to-peer push-based mechanism, without interrupting 
the execution of the rest of the workflow. In subsections A and 
B, we discussed methods for identifying the set of tasks to 
push, and the peer(s) to push those tasks to them. Here, we 
explain the mechanism for performing task migration and 
execution without interrupting the execution in-progress, while 
maintaining the integrity of the execution of the whole 
workflow.  

When a set of tasks need to be moved from one domain to 
another, we capture those tasks and the associated trigger 
messages and create a new workflow, which we call a 
patchDAG. The patchDAG is a fragment of the whole that 
encapsulates the business logic of the tasks that are selected for 
migration. This patchDAG is transferred to the proper domain 
and executed independent of the original workflow. Even 
though it executes separately from the original workflow, by 
means of the trigger messages embedded within it, the 
patchDAG achieves the necessary interactions with the original 
workflow.  This way, execution of the original workflow is 
sustained without making any changes to the rest of the 
workflow. 

Fig. 5 shows a sample mapping scenario of a simple 
workflow that is to be executed in collaboration between 
WFM-1 and WFM-2 with our decentralized workflow 
execution approach. Consider a case where after the execution 
of task A in WFM-1, WFM-1 detects an overload on its 
resources and decides to push task B and task C to WFM-2. 

Assuming that WFM-2 is able to receive those tasks, Fig. 6 
shows the new outlook of the execution of the workflow after 
the adaptation. The patchDAG in this case includes task B, task 
C, and individual trigger messages from each of these tasks to 
synchronize with task F in the original workflow. This 
patchDAG is constructed at WFM-1 and transferred to WFM-2 
for execution. WFM-2 starts the execution of this patchDAG 
independent from the original workflow, but as the tasks in the 
patchDAG finish and trigger messages are sent out, 
synchronization with the original workflow is achieved and 
task F in the original workflow can be scheduled for execution 
in WFM-2. 

We will give details of how a patchDAG is constructed and 
we will show a sample patchDAG specification in Section 4. 

 
Figure 5.  Before Adaptation 

IV. IMPLEMENTATION 

In this section, first we will introduce the implementation of 
decentralizing a centralized workflow specification. Then, we 
will explain how we achieve adaptation over decentralized 
execution. Our implementation is based on Condor DAGMan 
workflow execution engine, which is a meta-scheduler on top 
of Condor workload scheduler [9]. The systems we have tested 
our prototype implementation had standard Condor versions of 
6.7, on which and further versions. 

A. Decentralization 
Let us consider the sample mapping of a DAG spanning 

across multiple domains as in Fig. 5. The standard centralized 
Condor DAGMan specification on WFM-1 is provided in 
Listing 1. In this case, the whole workflow is orchestrated from 
the Condor DAGMan instance at WFM-1. Cross-domain task 
submissions (e.g., task D) would be facilitated through the 
employment of Condor-G [16] and those tasks would be 
constructed accordingly. The details pertaining the individual 
task construction and modification are outside the scope of this 
paper. 

The decentralization of an original DAG specification for 
our Condor DAGMan-based prototype occurs in two stages. In 
the first stage, HWM (in this case, WFM-1) aggregates the 
original DAG specification with mapping and site-specific 
contact information. Mapping information denotes the site that 
is responsible for each task’s execution. Site-specific contact 
information includes the GRAM (Grid Resource Allocation 
and Management) [3] end-point reference to facilitate trigger 
message communication, and the GridFTP [17] server and 
URL information to facilitate the transfer of data items among 
sites. HWM distributes this aggregated DAG specification to 
all the peer WFMs involved in the execution of the workflow. 

 

Figure 6.  After Adaptation 



 

Listing 1. Original DAG specification for the DAG given in Figure 5. 

The second stage of decentralization process occurs at 
individual sites upon receiving the aggregated DAG 
specification. Each WFM modifies its own copy of the DAG 
specification based on the information received from the 
HWM. Listing 2 and Listing 3 displays the DAG specifications 
at WFM-1 and WFM-2 respectively, after the modification. 
There are 3 basic functionalities involved within this 
modification process: 

1. If a task is mapped on a different domain, this task is 
labeled as DONE in the DAG specification. (This will cause 
local Condor DAGMan instance to skip this task during the 
execution.) 

2. If a task has child task(s) that is mapped on a different 
domain, insert a Post Script in the DAG specification to 
synchronize with the child task(s). 

3. If a task has parent task(s) that is mapped on a different 
domain, insert a Pre Script in the DAG specification for the 
reception of a matching synchronization message. 

Our Post Script prototype simply generates a file that is 
specifically named (e.g., file: A_D to trigger task D at WFM-2) 
and puts it in the shared folder of the receiving end. The Pre 
Script simply checks the existence of the specifically named 
file in the shared folder. 

Hence, the final set of DAG specifications at each site 
differs, but the collaborative execution of these DAGs results in 
the complete and exact execution of the original DAG 
specification. 

 

Listing 2. Modified DAG specification for WFM-1. 

 

Listing 3. Modified DAG specification for WFM-2. 

B. Run-time Adaptation  
As mentioned in Section 3, we provide run-time adaptation 

through an adaptation daemon running at each site. The 
adaptation daemon constantly monitors the execution progress 
of the workflow and the length of ready queue. It also has a 
thread that listens for any push requests that might come from 
other peers.  

The specific functionality of an adaptation daemon in case 
of an adaptation process varies depending on its role. The 
algorithm employed at the adaptation daemon for the pushing 
role is shown in Listing 4. After the task(s) to push is chosen, 
and a site to push the patchDAG is picked successfully, the 
patchDAG is sent to the other site. Then, the pusher site needs 
to perform some additional operations at the local site. First, it 
needs to remove those pushed tasks from the local Condor 
queue (step 5). But, Condor DAGMan requires all tasks to 
complete successfully for the whole DAG to succeed. 
Therefore, step 5 will cause the local DAG execution to fail 
eventually (it fails when the workflow execution cannot 
proceed any further due to dependencies). When a DAG fails 
execution, Condor DAGMan automatically generates a rescue 
DAG (step 6). Adaptation daemon monitors and detects the 
generation of this rescue DAG. Then, it adapts this rescue 
DAG to conform to the new mapping scenario. First, it labels 
those tasks that are pushed to other sites as “DONE” in the 
rescue DAG (step 7.a). Also, if there are any tasks that are 
locally mapped and have at least one parent task among the 
pushed tasks, a Pre Script is inserted into the rescue DAG 
specification to achieve synchronization (step 7.b.) Then, this 
modified rescue DAG is submitted again to the local Condor 
DAGMan engine. 

Listing 5 shows the algorithm employed at the adaptation 
daemon for the receiving role. The only operation that the 
adaptation daemon needs to perform in this case is to receive 
the patchDAG and submit it to the local Condor DAGMan 
engine. 

Listing 6 shows the sample specification for the patchDAG 
illustrated in Fig. 6. In this specification, the only different item 
than the previous specifications is the transferData script. There 
is a transferData Pre Script before both task B and task C, and 
it performs the transfer of any input data required for the 
execution of these tasks at its new location. 

 

Listing 4. Pushing algorithm employed within the Adaptation Daemon. 

1. Detect the need for adaptation 

2. Select the task(s) to push 

3. Pick a site among candidates 

a. if negotiation is successful, move to step 4 

b. if negotiation is unsuccessful, pick another site, repeat step 

3 

c. if tried all the sites, abort the adaptation 

4. Construct the patchDAG and send it to the receiver site 

5. Remove pushed tasks from the local queue (condor_rm taskID) 

6. Wait for a rescue DAG to be created by Condor DAGMan 

7. Modify the rescue DAG  

 a. label the pushed tasks as DONE 

b. insert a Pre Script for the task(s) which is mapped locally 

and is a child of a pushed task  

8. Submit the modified rescue DAG to Condor DAGMan. 

 

Job     A     A.submit     DONE 

Job     B     B.submit     DONE 

Job     C     C.submit     DONE 

Job     D     D.submit 

Job     E     E.submit 

Job     F     F.submit 

 

SCRIPT PRE  D   synch.sh   A_D  

SCRIPT PRE  E   synch.sh   A_E  

SCRIPT PRE  F   synch.sh   B_F  C_F 

… 

 

Job     A     A.submit 

Job     B     B.submit  

Job     C     C.submit  

Job     D     D.submit    DONE 

Job     E     E.submit    DONE 

Job     F     F.submit    DONE 

 

SCRIPT POST  A   trigger.sh   A_D A_E 

SCRIPT POST  B   trigger.sh   B_F 

SCRIPT POST  C   trigger.sh   C_F 

… 

Job     A     A.submit 

Job     B     B.submit  

Job     C     C.submit  

Job     D     D.submit 

Job     E     E.submit 

Job     F     F.submit 

 

PARENT  A   CHILD  B C D E 

PARENT  B C D E  CHILD   F 

 



 

Listing 5. Receiving algorithm employed within the Adaptation 

Daemon. 

 

Listing 6. PatchDAG specification for the scenario given in Figure 6. 

V. RELATED WORK 

Pegasus [6] and ASKALON [11] are two significant 
workflow management systems for the grid environment.  
Pegasus receives an incoming workflow and then partitions it 
into a collection of sub-workflows.  Pegasus uses the Condor 
DAGMan [12] as the workflow execution engine. A single 
central DAGMan instance works as a meta-scheduler to submit 
and monitor jobs on local and remote domains of a grid. This is 
a centralized model of workflow execution.  ASKALON has its 
own design of the workflow engines.  For each workflow, the 
execution enactment consists of a master and many slave 
engine for sub-workflows.  In other words, ASKALON 
supports a distributed model of workflow execution.  Unlike 
Pegasus and ASKALON, the workflow system we propose for 
a grid environment consists of one or more peer domain 
workflow managers [5].  

Partitioning an incoming workflow for execution can be 
multiple phases and multiple iterations with a phase in 
ASKALON [10], described as its initial partition phase and 
run-time optimization phase. Re-partitioning of a workflow to 
achieve run-time optimization phase can have one or more 
iterations. ASKALON re-partition is done by the master engine 
for the workflow.  The approach described in this paper is 
different from ASKALON as each peer workflow manager is 
responsible for a sub-workflow repartitioning.  

Many studies examine the efficiency and effectiveness of 
run-time workflow rescheduling algorithm. The studies 
presented in [22, 2] propose modifications to the   initial 
workflow schedule at run-time via some modifications to 
existing workflow scheduling algorithms. The closest study [8] 
to the work presented in this paper is provided as an adaptation 
mechanism on top of Pegasus workflow planner [6]. In this 
study, the mapping of a workflow executing on top of Condor 
DAGMan workflow execution engine is monitored 
periodically, and if there is a substantial increase or decrease in 
queue wait times per site, Pegasus workflow planner tools are 
called to perform a new mapping. After an improved mapping 
is generated, execution of the current workflow is stopped, and 
the workflow is deployed again according to the new mapping. 
All the phases (monitoring, analysis, planning, and execution) 
involved in this adaptation process are performed in a 

centralized manner, and this is the main difference between this 
work and our approach. Also, our approach does not 
necessitate the halting of the current execution of the 
workflow; hence it is expected to be lower-cost and less 
intrusive under normal conditions. 

VI. CONCLUSION 

In this paper, we addressed the scalability and adaptation 
problems of large-scale workflows in distributed environments. 
Contrary to many existing solutions, our decentralized 
approach has a low performance overhead and is transparent. 
Our push-based mechanism does not require the use of any 
other WFMs other than those that are directly involved with the 
adaptation process. Also, our devised patchDAG-based 
solution does not require the halting and re-deployment of a 
workflow at runtime, but rather, acts as a bridge between the 
remapped portions of the workflow. Our prototype 
implementation on Condor DAGMan shows the feasibility and 
transparency of our approach.  

Our future studies include the enhancement of the 
adaptation with a pull-based mechanism. With such as 
mechanism, a lightly-loaded WFM can opportunistically pull 
some of the tasks from relatively heavy-loaded sites. We also 
would like to explore the application of our approach to other 
existing workflow management systems. 
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